Code No: 123AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 THERMODYNAMICS (Common to ME, AE, MSNT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	Discuss the similarities and dissimilarities between heat and work	[2]
b)	What are intensive and extensive properties?	[3]
c)	What is PMM-I. Justify with reason whether it is feasible or not?	[2]
d)	A heat pump takes up heat from cold outdoors and transfers it to warmer in	door space. Is
	this a violation of second law of thermodynamics? Explain.	[3]
e)	What is the difference between critical point and triple point?	[2]
f)	What is pure substance? Draw PV diagram for a pure substance.	[3]
g)	Define the degree of saturation. What are its limiting values?	[2]
h)	List the six psychrometric processes?	[3]
i)	State the four processes of Diesel Cycle?	[2]
j)	What are cyclic and noncyclic heat engines? Give examples.	[3]

PART-B

(50 Marks)

- 2.a) Explain Joules experiment and state the first law of thermodynamics applied to a closed system undergone by a cyclic process.
 - b) A mass of gas is compressed in a quasi-static process from 80 kPa, 0.1 m ³ to 0.4 MPa, 0.03 m³. Assuming that the pressures volume are related by PV ⁿ=constant, find network done by gas system. [5+5]

OR

- 3.a) Show that internal energy is a property of the system.
 - b) Calculate the amount of heat required to convert 100 kg of ice at 0 CO into steam at 100 0 C at normal pressure. Specific heat capacity of ice=2100 J/Kg K, latent heat of fusion of ice =3.36 × 105 J/Kg, specific heat capacity of water=4.2 kg K/kg-K and latent heat of vaporization of water = 2.25 × 10⁶ J/kg. [5+5]
- 4.a) Write the steady flow energy equation for a single stream entering and a single stream leaving a control volume and explain the various terms in it.
 - b) Define Claussius inequality and prove it.

[5+5]

OR

Download all NOTES and PAPERS at StudentSuvidha.com

- 5.a) Show that the enthalpy of a fluid before throttling is equal to that after throttling.
- b) A room for four persons has two fans, each consuming 0.18 kW power, and three 100W lams. Ventilation air at the rate of 80 kg/h enters with an enthalpy of 84kJ/kg and leaves with an enthalpy of 59 kJ/kg. If each person puts out heat at therate of 630 kJ/hr. Determine the rate at which heat is to be removed by a roomcooler, so that a steady state is maintained in the room. [5+5]
- 6.a) Discuss about dryness fraction of steam.
 - b) Steam at 0.8 MPa, 250 °C and flowing at a rate of 1 kg/s passes into a pipe carrying wet steam at 0.8 MPa, 0.9 dry. After adiabatic mixing the flow rate is 2.3 kg/s. Determine the condition of steam after mixing. The mixture is now extended in a frictionless nozzle isentropically to a pressure of 0.4 MPa. Determine the velocity of steam leaving the nozzle. Neglect the velocity of steam in the pipe. [5+5]

OR

- 7.a) Explain the working of throttling calorimeter.
 b) Steam initially at 0.3 MPa, 250°C is cooled at constant volume.
 i) At what temperature will steam become superheated vapour?
 ii) What is the quality of steam at 80°C?
 iii) What is the heat transferred per kg of steam in cooling from 250°C to 80°C. [5+5]
- 8.a) Derive the expression for change of enthalpy of an ideal gas in a reversible adiabatic process in terms of pressure ratio.
 - b) Two streams of air 25 °C, 50% RH and 25 °C, 60% RH are mixed adiabatically to obtain 0.3 kg/s of dry air at 30 °C. Calculate the amount of air drawn from both the streams and the humidity ratio of mixed air. [5+5]
- 9.a) Express the changes in internal energy and enthalpy of an ideal gas in a reversible adiabatic process in terms of the pressure ratio.
 - b) Atmospheric are at 1 bar and is at 25°C DBT and 15°C WBT. Calculate (i) relative humidity (i) specific humidity (iii) vapour density in air (iv) DPT(v) enthalpy of mixture. [5+5]
- 10.a) Mention the merits and demerits of the Stirling and Ericsson cycles.
 - b) With the help of p-v and T-s diagrams, show that for the same maximum pressure and temperature of the cycle and the same heat rejection, $\eta_{\text{Diesel}} > \eta_{\text{Dual}} > \eta_{\text{Otto}}$ [5+5]

OR

11. In an air standard Diesel cycle, the compression ratio is 16, and at the beginning of isentropic compression, the temperature is 15°C and the pressure is 0.1 M Pa. Heat is added until the temperature at the end of the constant pressure process is 1480 °C. Calculate:

a) the cut-off ratio,

- b) the heat supplied per kg of air,
- c) the cycle efficiency and

d) the m.e.p.

---00000----

[10]

Download all NOTES and PAPERS at StudentSuvidha.com